Calc 3D 

Quaternionen

Quaternionen sind komplexen Zahlen und hyperkomplexen Zahlen ähnlich. Allerdings ist die Multiplikation nicht kommutativ (vertauschbar)
 .Sie haben 3 Imaginärteile, die im folgenden mit den Buchstaben j, k und l markiert werden. Der Realteil hat bei dieser Schreibweise keine Markierung.


 





















Formulierung einer räumlichen Drehung

entspricht dem Winkel um den gedreht wird.
 entspricht der Achse um die gedreht wird.
Anwendung finden die Quaternionen heute hauptsächlich in der Computergraphik, da sich mit Ihnen Drehungen im Raum darstellen lassen.

Außerdem werden sie noch in der Quantenmechanik bei der Beschreibung von Spins verwendet.
Hierbei setzt man statt der Markierungen die Pauli-Spinmatrizen:


Rotationen mit Quaternionen

Ein Punkt P=(x,y,z) wird durch das Quaternion p = ix + jy + kz repräsentiert.
Eine Rotation um die x-Achse um einen Winkel durch das Quaternion repräsentiert.
Der rotierte Punkt ist .

Umwandlung von Quaternion in Rotationsmatrix


-->


Umwandlung von Rotationsmatrix in Quaternion


 




d

Trigonometrische Funktionen von Quaternionen

Bei dem folgenden Lösungsverfahren werden aus den Quaternionen erst komplexe Zahlen erzeugt. Auf diese wird dann die Funktion im Komplexen angewendet. Danach wird das komplexe Ergebnis unter Berücksichtigung des ursprünglichen Quaternions wieder in ein Quaternion umgewandelt.
Da es zu diesem Thema sehr wenige Veröffentlichungen gibt, weiss ich nicht genau, ob dies korrekt ist und ob es auf alle unten aufgeführten Funktionen anwendbar ist. Für Hinweise hierzu wäre ich dankbar. (email: calc_3d@greuer.de)

Verfahren

Auf das Quaternion soll die Funktion func(q) angewendet werden.
q lässt sich aufteilen in den

Realteil


und den

Imaginärteil


Daraus wird eine komplexe Zahl erzeugt.
Auf diese komplexe Zahl wird die Funktion func(z) angewendet:
Unter Berücksichtigung des Imaginärteils des ursprünglichen Quaternions wird das Ergebnis erzeugt:


mit


Dieses Verfahren wird in Calc 3D auf folgende Funktionen angewendet:
sin; cos; tan; sinh; cosh; tanh; arcsin; arccos; arctan; arccot; arsinh; arcosh; artanh; arcoth; log; exp

 






 Website designed by Webdesign Mika Salonen   and Andreas Greuer